Tutorial

Setup

First, make sure you have XLSX.jl package installed.

julia> using Pkg

julia> Pkg.add("XLSX")

Getting Started

The basic usage is to read an Excel file and read values.

julia> import XLSX

julia> xf = XLSX.readxlsx("myfile.xlsx")
XLSXFile("myfile.xlsx") containing 3 Worksheets
            sheetname size          range
-------------------------------------------------
              mysheet 4x2           A1:B4
           othersheet 1x1           A1:A1
                named 1x1           B4:B4

julia> XLSX.sheetnames(xf)
3-element Array{String,1}:
 "mysheet"
 "othersheet"
 "named"

julia> sh = xf["mysheet"] # get a reference to a Worksheet
4×2 XLSX.Worksheet: ["mysheet"](A1:B4)

julia> sh[2, 2] # access element "B2" (2nd row, 2nd column)
"first"

julia> sh["B2"] # you can also use the cell name
"first"

julia> sh["A2:B4"] # or a cell range
3×2 Array{Any,2}:
 1  "first"
 2  "second"
 3  "third"

julia> XLSX.readdata("myfile.xlsx", "mysheet", "A2:B4") # shorthand for all above
3×2 Array{Any,2}:
 1  "first"
 2  "second"
 3  "third"

julia> sh[:] # all data inside worksheet's dimension
4×2 Array{Any,2}:
  "HeaderA"  "HeaderB"
 1           "first"
 2           "second"
 3           "third"

julia> xf["mysheet!A2:B4"] # you can also query values using a sheet reference
3×2 Array{Any,2}:
 1  "first"
 2  "second"
 3  "third"

julia> xf["NAMED_CELL"] # you can even read named ranges
"B4 is a named cell from sheet \"named\""

julia> xf["mysheet!A:B"] # Column ranges are also supported
4×2 Array{Any,2}:
  "HeaderA"  "HeaderB"
 1           "first"
 2           "second"
 3           "third"

To inspect the internal representation of each cell, use the getcell or getcellrange methods.

The example above used xf = XLSX.readxlsx(filename) to open a file, so all file contents are fetched at once from disk.

You can also use XLSX.openxlsx to read file contents as needed (see Reading Large Excel Files and Caching).

Read Tabular Data

The XLSX.gettable method returns tabular data from a spreadsheet as a tuple (data, column_labels). You can use it to create a DataFrame from DataFrames.jl. Check the docstring for gettable method for more advanced options.

There's also a helper method XLSX.readtable to read from file directly, as shown in the following example. In this case, the ... operator will splat the tuple (data, column_labels) into the constructor of DataFrame.

julia> using DataFrames, XLSX

julia> df = DataFrame(XLSX.readtable("myfile.xlsx", "mysheet")...)
3×2 DataFrames.DataFrame
│ Row │ HeaderA │ HeaderB  │
├─────┼─────────┼──────────┤
│ 1   │ 1       │ "first"  │
│ 2   │ 2       │ "second" │
│ 3   │ 3       │ "third"  │

Reading Cells as a Julia Matrix

Use XLSX.readdata or XLSX.getdata to read content as a Julia matrix.

julia> import XLSX

julia> m = XLSX.readdata("myfile.xlsx", "mysheet!A1:B3")
3×2 Array{Any,2}:
  "HeaderA"  "HeaderB"
 1           "first"
 2           "second"

Indexing in a Worksheet will dispatch to XLSX.getdata method.

julia> xf = XLSX.readxlsx("myfile.xlsx")
XLSXFile("myfile.xlsx") containing 3 Worksheets
            sheetname size          range
-------------------------------------------------
              mysheet 4x2           A1:B4
           othersheet 1x1           A1:A1
                named 1x1           B4:B4

julia> xf["mysheet!A1:B3"]
3×2 Array{Any,2}:
  "HeaderA"  "HeaderB"
 1           "first"
 2           "second"

julia> sheet = xf["mysheet"]
4×2 XLSX.Worksheet: ["mysheet"](A1:B4)

julia> sheet["A1:B3"]
3×2 Array{Any,2}:
  "HeaderA"  "HeaderB"
 1           "first"
 2           "second"

But indexing in a single cell will return a single value instead of a matrix.

julia> sheet["A1"]
"HeaderA"

If you don't know the desired range in advance, you can take advantage of the XLSX.readtable and XLSX.gettable methods.

julia> columns, labels = XLSX.readtable("myfile.xlsx", "mysheet")
(Any[Any[1, 2, 3], Any["first", "second", "third"]], Symbol[:HeaderA, :HeaderB])

julia> m = hcat(columns...)
3×2 Array{Any,2}:
 1  "first"
 2  "second"
 3  "third"

Reading Large Excel Files and Caching

The method XLSX.openxlsx has a enable_cache option to control worksheet cells caching.

Cache is enabled by default, so if you read a worksheet cell twice it will use the cached value instead of reading from disk in the second time.

If enable_cache=false, worksheet cells will always be read from disk. This is useful when you want to read a spreadsheet that doesn't fit into memory.

The following example shows how you would read worksheet cells, one row at a time, where myfile.xlsx is a spreadsheet that doesn't fit into memory.

julia> XLSX.openxlsx("myfile.xlsx", enable_cache=false) do f
           sheet = f["mysheet"]
           for r in XLSX.eachrow(sheet)
              # r is a `SheetRow`, values are read using column references
              rn = XLSX.row_number(r) # `SheetRow` row number
              v1 = r[1]    # will read value at column 1
              v2 = r["B"]  # will read value at column 2

              println("v1=$v1, v2=$v2")
           end
      end
v1=HeaderA, v2=HeaderB
v1=1, v2=first
v1=2, v2=second
v1=3, v2=third

You could also stream tabular data using XLSX.eachtablerow(sheet), which is the underlying iterator in gettable method. Check docstrings for XLSX.eachtablerow for more advanced options.

julia> XLSX.openxlsx("myfile.xlsx", enable_cache=false) do f
           sheet = f["mysheet"]
           for r in XLSX.eachtablerow(sheet)
               # r is a `TableRow`, values are read using column labels or numbers
               rn = XLSX.row_number(r) # `TableRow` row number
               v1 = r[1] # will read value at table column 1
               v2 = r[:HeaderB] # will read value at column labeled `:HeaderB`

               println("v1=$v1, v2=$v2")
            end
       end
v1=1, v2=first
v1=2, v2=second
v1=3, v2=third

Writing Excel Files

Create New Files

Opening a file in write mode with XLSX.openxlsx will open a new (blank) Excel file for editing.

XLSX.openxlsx("my_new_file.xlsx", mode="w") do xf
    sheet = xf[1]
    XLSX.rename!(sheet, "new_sheet")
    sheet["A1"] = "this"
    sheet["A2"] = "is a"
    sheet["A3"] = "new file"
    sheet["A4"] = 100

    # will add a row from "A5" to "E5"
    sheet["A5"] = collect(1:5) # equivalent to `sheet["A5", dim=2] = collect(1:4)`

    # will add a column from "B1" to "B4"
    sheet["B1", dim=1] = collect(1:4)

    # will add a matrix from "A7" to "C9"
    sheet["A7:C9"] = [ 1 2 3 ; 4 5 6 ; 7 8 9 ]
end

Edit Existing Files

Opening a file in read-write mode with XLSX.openxlsx will open an existing Excel file for editing. This will preserve existing data in the original file.

XLSX.openxlsx("my_new_file.xlsx", mode="rw") do xf
    sheet = xf[1]
    sheet["B1"] = "new data"
end
Warning

The read-write mode is known to produce some data loss. See #159.

Simple data should work fine. Users are advised to use this feature with caution when working with formulas and charts.

Export Tabular Data from a Worksheet

Given a sheet reference, use the XLSX.writetable! method. Anchor cell defaults to cell "A1".

using XLSX, Test

filename = "myfile.xlsx"

columns = Vector()
push!(columns, [1, 2, 3])
push!(columns, ["a", "b", "c"])

labels = [ "column_1", "column_2"]

XLSX.openxlsx(filename, mode="w") do xf
    sheet = xf[1]
    XLSX.writetable!(sheet, columns, labels, anchor_cell=XLSX.CellRef("B2"))
end

# read data back
XLSX.openxlsx(filename) do xf
    sheet = xf[1]
    @test sheet["B2"] == "column_1"
    @test sheet["C2"] == "column_2"
    @test sheet["B3"] == 1
    @test sheet["B4"] == 2
    @test sheet["B5"] == 3
    @test sheet["C3"] == "a"
    @test sheet["C4"] == "b"
    @test sheet["C5"] == "c"
end

You can also use XLSX.writetable to write directly to a new file (see next section).

Export Tabular Data from a DataFrame

To export tabular data to Excel, use XLSX.writetable method, which accepts either columns and column names, or any Tables.jl table.

julia> using Dates

julia> import DataFrames, XLSX

julia> df = DataFrames.DataFrame(integers=[1, 2, 3, 4], strings=["Hey", "You", "Out", "There"], floats=[10.2, 20.3, 30.4, 40.5], dates=[Date(2018,2,20), Date(2018,2,21), Date(2018,2,22), Date(2018,2,23)], times=[Dates.Time(19,10), Dates.Time(19,20), Dates.Time(19,30), Dates.Time(19,40)], datetimes=[Dates.DateTime(2018,5,20,19,10), Dates.DateTime(2018,5,20,19,20), Dates.DateTime(2018,5,20,19,30), Dates.DateTime(2018,5,20,19,40)])
4×6 DataFrames.DataFrame
│ Row │ integers │ strings │ floats │ dates      │ times    │ datetimes           │
├─────┼──────────┼─────────┼────────┼────────────┼──────────┼─────────────────────┤
│ 1   │ 1        │ Hey     │ 10.2   │ 2018-02-20 │ 19:10:00 │ 2018-05-20T19:10:00 │
│ 2   │ 2        │ You     │ 20.3   │ 2018-02-21 │ 19:20:00 │ 2018-05-20T19:20:00 │
│ 3   │ 3        │ Out     │ 30.4   │ 2018-02-22 │ 19:30:00 │ 2018-05-20T19:30:00 │
│ 4   │ 4        │ There   │ 40.5   │ 2018-02-23 │ 19:40:00 │ 2018-05-20T19:40:00 │

julia> XLSX.writetable("df.xlsx", df)

julia> XLSX.writetable("df.xlsx", collect(DataFrames.eachcol(df)), DataFrames.names(df))

You can also export multiple tables to Excel, each table in a separate worksheet, by either passing a tuple (columns, names) to a keyword argument for each sheet name, or a list "sheet name" => table pairs for any Tables.jl compatible source.

julia> import DataFrames, XLSX

julia> df1 = DataFrames.DataFrame(COL1=[10,20,30], COL2=["Fist", "Sec", "Third"])
3×2 DataFrames.DataFrame
│ Row │ COL1 │ COL2  │
├─────┼──────┼───────┤
│ 1   │ 10   │ Fist  │
│ 2   │ 20   │ Sec   │
│ 3   │ 30   │ Third │

julia> df2 = DataFrames.DataFrame(AA=["aa", "bb"], AB=[10.1, 10.2])
2×2 DataFrames.DataFrame
│ Row │ AA │ AB   │
├─────┼────┼──────┤
│ 1   │ aa │ 10.1 │
│ 2   │ bb │ 10.2 │

julia> XLSX.writetable("report.xlsx", REPORT_A=( collect(DataFrames.eachcol(df1)), DataFrames.names(df1) ), REPORT_B=( collect(DataFrames.eachcol(df2)), DataFrames.names(df2) ))

julia> XLSX.writetable("report.xlsx", "REPORT_A" => df1, "REPORT_B" => df1)

Tables.jl interface

The type XLSX.TableRowIterator conforms to Tables.jl interface. An instance of XLSX.TableRowIterator is created by the function XLSX.eachtablerow.

Also, XLSX.writetable accepts an argument that conforms to the Tables.jl interface.

As an example, the type DataFrame from DataFrames package supports the Tables.jl interface. The following code writes and reads back a DataFrame to an Excel file.

julia> using Dates

julia> import DataFrames, XLSX

julia> df = DataFrames.DataFrame(integers=[1, 2, 3, 4], strings=["Hey", "You", "Out", "There"], floats=[10.2, 20.3, 30.4, 40.5], dates=[Date(2018,2,20), Date(2018,2,21), Date(2018,2,22), Date(2018,2,23)], times=[Dates.Time(19,10), Dates.Time(19,20), Dates.Time(19,30), Dates.Time(19,40)], datetimes=[Dates.DateTime(2018,5,20,19,10), Dates.DateTime(2018,5,20,19,20), Dates.DateTime(2018,5,20,19,30), Dates.DateTime(2018,5,20,19,40)])
4×6 DataFrames.DataFrame
│ Row │ integers │ strings │ floats  │ dates      │ times    │ datetimes           │
│     │ Int64    │ String  │ Float64 │ Date       │ Time     │ DateTime            │
├─────┼──────────┼─────────┼─────────┼────────────┼──────────┼─────────────────────┤
│ 1   │ 1        │ Hey     │ 10.2    │ 2018-02-20 │ 19:10:00 │ 2018-05-20T19:10:00 │
│ 2   │ 2        │ You     │ 20.3    │ 2018-02-21 │ 19:20:00 │ 2018-05-20T19:20:00 │
│ 3   │ 3        │ Out     │ 30.4    │ 2018-02-22 │ 19:30:00 │ 2018-05-20T19:30:00 │
│ 4   │ 4        │ There   │ 40.5    │ 2018-02-23 │ 19:40:00 │ 2018-05-20T19:40:00 │

julia> XLSX.writetable("output_table.xlsx", df, overwrite=true, sheetname="report", anchor_cell="B2")

julia> f = XLSX.readxlsx("output_table.xlsx")
XLSXFile("output_table.xlsx") containing 1 Worksheet
            sheetname size          range
-------------------------------------------------
               report 6x7           A1:G6


julia> s = f["report"]
6×7 XLSX.Worksheet: ["report"](A1:G6)

julia> df2 = XLSX.eachtablerow(s) |> DataFrames.DataFrame
4×6 DataFrames.DataFrame
│ Row │ integers │ strings │ floats  │ dates      │ times    │ datetimes           │
│     │ Int64    │ String  │ Float64 │ Date       │ Time     │ DateTime            │
├─────┼──────────┼─────────┼─────────┼────────────┼──────────┼─────────────────────┤
│ 1   │ 1        │ Hey     │ 10.2    │ 2018-02-20 │ 19:10:00 │ 2018-05-20T19:10:00 │
│ 2   │ 2        │ You     │ 20.3    │ 2018-02-21 │ 19:20:00 │ 2018-05-20T19:20:00 │
│ 3   │ 3        │ Out     │ 30.4    │ 2018-02-22 │ 19:30:00 │ 2018-05-20T19:30:00 │
│ 4   │ 4        │ There   │ 40.5    │ 2018-02-23 │ 19:40:00 │ 2018-05-20T19:40:00 │